
An Evolutionary Approach to Learning in Robots

DTI
BELEGTE

MAY 1 2 1995

John Grefenstette and Alan Schultz
Navy Center for Artificial Intelligence

Naval Research Laboratory
Washington, DC 20375

{gref, Schultz}@aic.nrl.navy.mil

Abstract

Evolutionary learning methods have been
found to be useful in several areas in the
development of intelligent robots. In the
approach described here, evolutionary
algorithms are used to explore alternative
robot behaviors within a simulation model as
a way of reducing the overall knowledge
engineering effort. This paper presents some
initial results of applying the SAMUEL
genetic learning system to a collision
avoidance and navigation task for mobile
robots.

1 INTRODUCTION
This is a progress report on our efforts to design
intelligent robots for complex environments. The sort of
applications we have in mind include sentry robots,
autonomous delivery vehicles, undersea surveillance
vehicles, and automated warehouse robots. In particular,
we are investigating issues relating to machine learning,
using multiple mobile robots to perform tasks such as
playing hide-and-seek, tag, or competing to find hidden
objects.

Given the wide range of tasks in the area of robotics and
learning, it may be helpful to briefly describe the flavor
of our research. We begin by stating the orientation and
motivation for our work, the kinds of tasks we chose to
focus on, and our assumptions about what background
knowledge is available to the learning system. While we
make no claims that this research focus is the only
reasonable approach, we are confident that this approach
will provide a significant contribution to the
development of robust, autonomous robots.

1.1 RESEARCH ORIENTATION

At one extreme, traditional robotics research assumes an
engineering approach in which all aspects of the robot's
behavior are pre-programmed. This approach suffers
from the requirement of intensive human analysis of the
robot and its environment, and is primarily useful in

\

completely controlled and static task environments. At
another extreme, researchers interested in Artificial Life
seek to develop intelligent robots with minimal
dependence on models provided by human designers.
This is a very interesting approach with great promise for
the long term. We take a middle ground in our research.
From a practical perspective, machine learning can be
justified by reducing the overall development cost for
intelligent systems. This suggests an approach that treats
knowledge acquisition for an intelligent autonomous
system as a cooperative effort between the human
knowledge engineer and the robot itself. We seek
machine learning approaches that shift more of the
burden to the robot and thereby reduce the human
knowledge engineering costs. In contrast to research
paradigms that stipulate that the system must learn its
behaviors tabula rasa, we believe that the optimal trade-
off between human engineering effort and machine
learning effort will usually require that the learning
system be given whatever level of knowledge can be
easily provided by the designer. However, the cost of
manual knowledge engineering and the inherent
uncertainties in the task environment both imply that
some knowledge acquisition is better left to the robot
itself.

1.2 TASK ENVIRONMENTS AND KNOWLEDGE
REPRESENTATION

Much traditional research on robot learning assumes a
closed world model, in which only changes made by the
learning agent affect the environment. For robots that
need to interact with other agents, this is clearly an
unwarranted assumption. Therefore, we typically select
learning tasks that involve other agents operating in the
learning agent's environment. We generally assume that
the learning agent has no access to a predictive model of
other agents in the environment. The need to interact
with other competitive or cooperating agents motivates
our preference for learning reactive behaviors over
deliberative planning. Planning generally requires a
good domain model, and given our presumed lack of
knowledge about the other agents in the environment, we
have chosen to focus on learning reactive rules. Our
initial experiments, described below, involve learning
rules that map current sensor readings to actions.

This document has been approved
lor public release and sale; its
4Utrit>ution is unlimited

However, it should be emphasized that learning reactive
rules does not necessarily imply a commitment to a
simple sensor-to-action level of reasoning. For example,
one might learn "reactive" rules that embody high-level
control knowledge, such as:

IF situation = danger AND mission = critical

THEN perform high-risk-maneuver
IF situation = danger AND mission < critical

THEN perform low-risk-maneuver

IF...

Our approach is expected to scale up quite naturally to
these forms of rules. One could easily imagine a
hierarchy of such rule sets, so that the actions such as
"perform high-risk-maneuver" would itself be
implements as a set of learned reactive rules.

13 BACKGROUND KNOWLEDGE

Different learning methods assume different levels of
background knowledge. For example, explanation-based
learning methods have many advantages if a strong
domain model is available. Our research generally
focuses on what can be learned in the absence of such a
model, motivated by the recognition that an autonomous
robot will always face at least some aspects of its
environment for which a strong model is not yet
available.

Despite the lack of a strong model, we do assume that
some useful knowledge is usually available in the form
of heuristic rules or advice that can be used in initialize
the learning system. Consequently, we have adopted a
rule-based knowledge representation that facilitates the
specification of heuristic strategies, as well as the
interpretation and automatic refinement of learned
strategies.
In many practical cases it is necessary to constrain the
exploration to avoid physical harm to the robot or to the
environment. Our learning systems permit the user to
specify fixed rules that either require or forbid the robot
to perform certain actions in specified situations.

It is somewhat fashionable to express misgivings about
learning under simulations, since simulation models used
in AI studies often fail to reflect the complexities, noise,
and errors that arise in real sensors and actuators
operating in the real world. Furthermore, traditional AI
research usually assumes that the inputs have already
been correctly translated from analog signals (e.g., sonar,
infra-red, etc.) to symbols (e.g., "door-is-open"). In
response to such shortcomings, some researchers argue
for the development of adaptive robots that evolve
behaviors without using a pre-specified model of the
world (Brooks, 1992). Here again, we prefer a middle
ground, assuming the existence of a limited fidelity
simulation model of the robot and its environment. This
is consistent with the view that the knowledge
acquisition task for autonomous robots be viewed as a
cooperative effort between the robot designers and the
robot itself. Some relevant knowledge will be known in

great detail to the designer, for example, the size and
weight of the robot, the characteristics of its sensors and
effectors, and at least some of the physics of the task
environment. The robot should have access to any such
knowledge that the designer can easily provide. This is
likely to include a quantitative simulation model of the
robot and its environment. It should be noted that some
robot manufacturers already provide sophisticated
simulation models of the robot in order to aid the
development of control software. We see no reason to
deny this resource to the learning robot itself.

2 APPROACH
The approach to learning behaviors for robots described
here reflects a particular methodology for learning via a
simulation model. The motivation is that making
mistakes on real systems may be costly or dangerous. In
addition, time constraints might limit the number of
experiences during learning in the real world, while in
many cases, the simulation model can be made to run
faster than real time. Since learning may require
experimenting with behaviors that might occasionally
produce unacceptable results if applied to the real world,
or might require too much time in the real environment,
we assume that hypothetical behaviors will be evaluated
in a simulation model (the off-line system). As
illustrated in Fig. 1, the current best behavior can be
placed in the on-line execution system, while learning
continues in the off-line system (Grefenstette and
Ramsey, 1992).

EXECUTION
SYSTEM

OFF-LINE
SYSTEM

Environment •H>
Decision
Maker

Simulation
Model -H.

Decision
Maker
Model

} r
f Active \ I

1 Knowledge W—*
V Base J '

Learning
Method

f Test \
< M Knowledge J

V Base J

^—S ! V-X

Figure 1: Learning from a Simulation Model

The expectation is that behaviors learned in limited S
fidelity simulations will be useful in the operational D
environment. Previous studies have illustrated that D
knowledge learned under simulation is robust and might
be applicable to the real world if the simulation is more
general (i.e. has more noise, more varied conditions, etc.)
than the real world environment (Ramsey, Schultz and
Grefenstette, 1990). Where this is not possible, it is
important to identify the differences between the
simulation and the world and measure the effect upon the
learning process. / or

D<si ■li-.:sCial

ones

ft-l

O^t

The next section very briefly explains the learning
algorithm (and gives pointers to where more extensive
documentation can be found). After that, the actual
robot is described. Then we describe the simulation of
the robot. Our current learning task is explained,
followed by a description of some early experimental
results.

2.1 EVOLUTIONARY LEARNING

The field of robotics offers an endless supply of difficult
problems, requiring an equally impressive array of
methods for their solution. One class of methods that has
shown its utility on a number of relevant problems is
called Evolutionary Computation (De Jong and Spears,
1993). This term applies to computational methods that
incorporate principles from biological population
genetics to perform search, optimization, and machine
learning, and includes a variety of specific formulations
with names such as genetic algorithms, evolutionary
programming, evolution strategies, and genetic
programming. Evolutionary methods have found
applications that span the range of architectures for
intelligent robotics. For example, evolutionary
algorithms have been used to learn rule sets for rule-
based autonomous agents (Grefenstette, Ramsey and
Schultz, 1990), topologies and weights for neural nets for
robotic control (Whitley et al, 1993; Yamauchi, 1994),
fuzzy logic control systems (Karr, 1991), programs for
LISP-contxolled robots (Koza, 1992), and rules for
behavior-based robots (Dorigo and Schnepf, 1993).

In our approach evolutionary algorithms are used to
explore alternative robot behaviors within a simulation
model as a way of reducing the overall knowledge
engineering effort. The remainder of this paper will
focus on the SAMUEL evolutionary learning system
being developed at NRL (Grefenstette et al., 1990) and
will present initial results of applying the SAMUEL
system to a collision avoidance and navigation task for
mobile robots. In SAMUEL, the population is composed
of candidate behaviors for solving the task. SAMUEL
evaluates the candidate behaviors by testing them in a
simulated environment, here a simulation of the robot
and its environment. Based on the behaviors' overall
performance in this environment, genetic and other
operators are applied to improve the performance of the
population of behaviors. One cycle of testing all of the
competing behaviors is referred to as a generation, and is
repeated until a good behavior is evolved.

3 EXPERIMENTS
We have been developing this approach at NRL for the
past several years, but previous studies have been limited
to simulated environments. This section describes some
initial results with real robots. These initial results are
encouraging, and support the expectation that we will
able to scale up our approach to more challenging,
multi-agent tasks.

3.1 ROBOT PLATFORM

In these experiments, a Nomadic Technologies, Inc.
Nomad 200 robot was used. The robot's drive system,
which is housed in the base, uses three synchronized
wheels controlled by two motors, one driving the rotation
of all three wheels (translation of the robot) and the other
controlling the steering of all three wheels. A third
motor in the base controls the rotation of a turret that sits
on top of the base, although in these experiments, the
turret always pointed in the direction of steering.

Twenty tactile sensors are arranged in two offset rings
around the base. The turret contains three sensor
systems. A set of 16 sonar sensors, equally spaced in a
ring around the turret, provide range data from 6 inches
to a maximum of 240 inches. Each sonar cell has a beam
width of approximately 22.5 degrees. The turret also
contains a ring of 16 active infrared sensors. Using a
reflective intensity based system, these sensors give an
approximate measurement of range from 0 to 24 inches.

The robot has a two-dimensional structured-light range-
finding system, but this sensor is not used in these
experiments and is not described further. The robot
contains an 80486 processor running at 66 megahertz, a
separate microprocessor for the sensors and a separate
motor controller. Currently, the processor runs the DOS
operating system.

The robot can be controlled either from software running
on-board the robot's processor, or from a program
running on a host computer via radio modem. In both
cases, the programmer uses an identical set of library
routines which enable the programmer to both access the
sensors and give commands to control the robot. In these
experiments, the robot is controlled by giving it velocity
mode commands; that is, at each decision step,
translation and rotation rates are specified for the wheels,
and a rotation rate is specified for the turret. These
commands are given via a program running on a Unix
workstation.

3.2 ROBOT SIMULATION

Learning is accomplished off-line using a simulation of
the robot. The robot simulation uses the same C
language library interface that is used to control the
actual robot, so the simulation is the same as the real
robot from a programming point of view. However,
there are (as expected) significant differences between
the robot simulation and the real world robot. Here, we
point out some of the significant differences that affect
the learning process.

In the robot simulation, both the sonar and the infrared
sensors can be set to properly model beam width (the
width of the beam is adjustable in the simulation) or they
can be set to do simple ray tracing (i.e., an object is only
detected if it intersects with the ray drawn along the
direction the sensor is pointing). This has the advantage
of being significantly faster to simulate. In these
experiments, the ray tracing method is used for both the

sonar and the infrared. The effect on learning seems to
be that the learned behaviors are more cautious since,
during learning, the sonar using ray tracing appears very
noisy.

In the real robot, the tactile sensors require a certain
amount of force to activate them. However, in the
simulation, a collision with an object always results in an
activation of the tactile sensor. This difference has no
direct effect on learning, but it does effect the testing of
the final behaviors on the real robot.

In the real world, wheel slippage and irregularities of the
floor result in errors in dead reckoning (i.e., determining
the robot's position). Although the simulator has
parameters to model simple slippage of the wheels, we
set the simulation to not model slippage. The resulting
simulation has perfect location information from the
integrating of its velocity over time. This does not effect
these experiments due to the relatively short distances
traversed.

Another difference lies in the time lags associated with
the real robot being controlled by a remote host. Getting
the sensor values from the robot to the host, and the
action from the host back to the robot, takes a certain
amount of time that is not accurately simulated. This
time delay generally results in poorer performance of the
behaviors in the real world since the time from the
stimulus to the response differs from that experienced in
the simulation. In future experiments, the time lag will
be more accurately modeled.

3.3 PERFORMANCE TASK

The task to be performed by the robot, for which it must
learn a suitable reactive behavior, is to navigate through
a room from a given start position to within a certain
radius of a given goal location, while avoiding collisions
with obstacles randomly placed in the room. Since the
robot does not have a global map of the room, this is not
a path planning problem, but one of local navigation and
collision avoidance. The learning problem is to evolve a
behavior represented as a set of stimulus-response rules
that map current sensor state into velocity mode
commands for the robot to execute. The decision rate is
approximately 1 hertz. The robot is given a limited
amount of time to reach the goal.

For this task, the learning algorithm is not directly
presented with the 52 individual sensor readings or the
integrated robot position, but the algorithm is instead
given the following virtual sensor information:

Forward_sonar. The minimum value returned by the
three forward facing sonars.

Rear_sonar. The minimum value of the three rear facing
sonars.

Leftjonar: The minimum value returned by the five left
facing sonars.

Rightsonar. The minimum value returned by the five
right facing sonars.

The infrared is handled is an identical fashion, with four
sensors defined, forwardjr, rearjr, leftjr, and right Jr.
In addition, the following virtual sensors are defined for
the learning algorithm to use:

Time: The current decision time step.

Speed: The current translation rate of the robot.

Range: The range in inches to the goal position.

Bearing: The relative bearing in degrees to the goal
position.

Given these sensors, the resulting behavior must, at each
decision step, produce two actions: a translation rate for
the robot which is between -1 and 5 inches per second,
and a turning rate between -40 and 40 degrees per
second.

For these experiments, the starting position and the goal
position do not change. However, with each trial
presented to the robot during learning, the obstacles are
placed in different positions. There are two sizes of
obstacles placed in the room, one slightly smaller than
the diameter of the robot, and the other larger than the
diameter of the robot.

3.4 RESULTS

For the experiment reported here, the simulated 24 by 30
foot room contained between 5 and 10 obstacles, each
obstacle randomly chosen to be either 1.5 or 2.5 feet on a
side. The obstacles were placed somewhat randomly:
Five slightly overlapping regions in the room were
defined roughly corresponding to the North-East, South-
East, North-West and South-West sections of the room,
with another region defined for the center of the room.
Each of the five regions had either one or two of the
obstacles placed randomly within its boundaries. This
arrangement guarantees that a solution exists, yet forces
the robot to have to navigate around several boxes. Each
trial begins with a different configuration of the obstacles
in the room. The robot was given 80 decision time steps
to cross the room to the goal position.

The initial heterogeneous population (Schultz and
Grefenstette, 1990) consisted of a variety of rule sets
from different sources. This included a combination of
manually (human) generated rules sets and automatically
generated variants of those rules. The best of these
initial rule sets could successfully reach the goal 72.5
percent of the time in simulation, while the worst of them
would never reach the goal. The population size was 50
rule sets. Each rule set was evaluated on 20 trials to
determine its fitness, which was defined to be the average
of the performance measure over the 20 trials. The
system was run for 50 generations.

After every five generations, the best 5 rules sets (based
on the average performance measure) were tested on 50
random trials to see which could complete the task the
greatest number of times. The best performing rule set
was then evaluated on another 200 trials and this value is
plotted in Fig. 2.

1UU

95

90

85

80

75

70

65

fin

Success

Rate

of

Current

Behavior

10 15 20 25 30 35 40 45 50

Generations

Figure 2: Learning the Navigation Task.

As seen in this figure, the best performance behavior
could complete the task 93.5 percent of the time in the
simulated environment. After the experiment was
completed, the best rule set generated during the
experiment (obtained in generation 40) was tested on the
real robot. In 28 runs, the robot succeeded 24 times, a
performance level of 86 percent.

4 FUTURE DIRECTIONS
We expect to scale up this method to multi-robot tasks,
including competitive tasks such as playing tag, pursuit
and evasion games. In addition, we will continue to
explore ways on speeding the learning process by
including domain-specific biases in the evolutionary
learning method (Grefenstette, 1987). Here, we outline
specific extensions used for our robot navigation
problem.

• Choice of Search Space and Representation. The first
choice the user of an evolutionary algorithm needs to
make is the choice of the search space, along with an
appropriate representation. This choice clearly reflects
the trade-ofis between human and machine effort. For
example, if the choice is to search the space of all
mappings between the set of all possible sensor readings
(digitized to greatest possible resolution) to the set of all
possible actuator commands, this clearly places the
entire burden of knowledge acquisition on the learning
system. A more reasonable trade-off might be to process
the raw sensor readings into a set of virtual sensors and

to provide a set of behaviors for the robot, leaving the
task of learning the mappings between these much more
constrained sets. If the designer can specify the desired
behavior to within a set of numeric parameters, then
evolutionary algorithms can be used to search the space
of parameters for the most desirable values.

In the SAMUEL learning system, the representation of a
behavior is a set of stimulus-response rules. The left
hand sides of the rules are matched against the sensor
state of the robot, and the right hand sides of the rules
specify the action the robot is to take. Behaviors are
evaluated in a production system interpreter that
interacts with the robot (either real or simulated). Here
is an example of part of a rule set

IF front_sonar < 30 AND bearing > 10 THENturn = 20

IF front_ir<5 THEN speed = -10

IF ...

Each such rule plays the role of a gene, with a set of such
rules, or behavior, treated as a candidate solution to the
problem (navigation in this case).

In each decision cycle, the interpreter reads the current
state of the sensors to find rules that match, resolves
conflicts to determine one rule to fire based on previously
observed utilities of rules, and then fires the rule by
passing back to the robot the action to be performed (for
example a velocity mode command). This cycle is
repeated until the task is accomplished or failure occurs.

In SAMUEL, the user can further limit the search space
by defining a set of constraints in the form of rules that
specify conditions under which certain actions are either
forbidden or required (Grefenstette and Cobb, 1994).
Constraints are intended to limit the robot's actions
within physically safe parameters, but still allow freedom
to explore a large set of alternative strategies
(Grefenstette, 1992).

• Initial Population. Evolutionary algorithms often
begin with candidate solutions selected at random from
the search space. Often, the approach can be sped up by
the use of heuristics to select the starting population.
This must be done with care, however, since a lack of
sufficient diversity in the initial population is almost
guaranteed to produced premature convergence to
suboptimal solutions.

In SAMUEL, the rule representation was designed to
encourage the user to include heuristic strategies in the
initial population (Schultz and Grefenstette, 1990). In
fact, for many complex robotic tasks, it is unlikely that
the system will be able to evolve solutions without some
initial heuristics. For example, if the task is to track a
moving target, the robot is unlikely to perform the task at
all given a set of random rules of the form shown above.
We are exploring several approaches for exploiting
heuristic knowledge, including the automatic generation
of several variants from a user-generated rule set Again,
this raises the issue of trade-ofis between the effort of
specifying good initial rules and the effort of engineering

the search space to include only plausible solutions to the
task. The optimal trade-off will vary from task to task.

• Fitness Function. The fitness function is the main
mechanism for expressing bias in the genetic learning
approach. Two important issues must be addressed.
First, the fitness function should accurately reflect the
desired performance on the task. Evolutionary
algorithms are highly opportunistic optimizers and may
produce surprising results if the fitness function rewards
some behavior that the system designer does not want.
Evolutionary algorithms may also exploit unexpected
features of the simulation model to maximize
performance. Of course, this implies that the model
should accurately reflect the conditions in the target
environment. To the extent that this is not possible, our
studies (Ramsey et al., 1990) have shown that it is still
possible to learn from limited-fidelity simulations that err
on the side of difficulty (e.g., have more noisy sensors
that the real robots). In such cases, the learning time
increases, but so does the robustness of the learned rules.
Second, the fitness function should provide differential
payoff so that alternative candidate solutions can be
ranked. It should not present a "needle-in-a-haystack"
problem in which only the final solution is assigned a
positive fitness. In the task described here, the
performance measure is based on differential payoff for
different behaviors of the robot. In the navigation
experiments, getting to the goal quickly yields the
highest payoff while behaviors that result in collisions
with an obstacle receive the lowest payoff.

• Genetic Operators. Many early studies of genetic
algorithms employed simple syntactic operators to alter
candidate solutions, such as simple crossover and
random mutation. However, some recent studies have
used more heuristic operators that make more directed
changes based on the learning agent's experience. For
example, some genetic classifier systems use triggered
operators such a creating a new rule to cover a novel
situation (Booker, 1988). In SAMUEL, we use
generalization and specialization operators that are
triggered by specific conditions relating the measured
utilities of individual rules and the outcome of the task.
These may be viewed as Lamarckian forms of evolution
(Grefenstette, 1991), and show that artificial evolution
need not proceed along purely Darwinian lines.

• Hybrid Approaches. Finally, it is often useful to use
evolutionary methods in concert with other methods that
have complementary strengths. The strength of an
evolutionary algorithm is in rapidly identifying the most
promising regions of a complex search space.
Evolutionary methods are less efficient at fine-tuning
candidate solutions. Therefore, a natural hybrid is to use
an efficient local optimization method to improve the
final solutions found by the evolutionary system
(Grefenstette, 1987).

Another promising hybrid approach is to combine the
SAMUEL learning method with a case-based module, to
provide a way to dynamically modify the simulation
model based on the robot's experience with the external
environment. The next section covers this approach in
more detail.

4.1 ANYTIME LEARNING

The basic characteristics of anytime algorithms are: (1)
the algorithm can be suspended and resumed with
negligible overhead, (2) the algorithm can be terminated
at any time and will return some answer, and (3) the
answers returned improve over time. However, our use
of the term anytime learning is meant to denote a
particular way of integrating execution and learning.
The basic idea is to integrate two continuously running
modules: an execution module and a learning module
(see Figure 3). The agent's learning module contains a
simulation model with parameterized aspects of the
domain. It continuously tests new strategies against the
simulation model to develop improved strategies, and
updates the knowledge base used by the agent (in the
execution system) on the basis of the best available
results. The execution module controls the agent's
interaction with the environment, and includes a monitor
that can detect changes in the environment, and
dynamically modify the parameter ranges of the
simulation model (used by the learning module) to reflect
these changes. When the simulation model is modified,
the learning process is restarted on the modified model.
The learning system is assumed to operate indefinitely,
and the execution system uses the results of learning as
they become available.

EXECUTION
SYSTEM

Environment

Monitor

OFF-LINE
SYSTEM

Learning
Method

Figure 3: Anytime Learning System

In short, this approach uses an existing simulation model
as a base on which strategies are learned, and updates the
parameters of the simulation model as new information is
observed in the external environment in order to improve
long-term performance.

One important aspect of the anytime learning model
concerns the criteria for deciding when the external
environment has changed. In our current

implementation, the monitor compares measurable
aspects of the environment with the parameters provided
by the simulation design. In addition, the monitor might
also detect differences between the expected and actual
performance of the current strategy in the environment.
For example, if the performance level degrades in the
environment, that is a sign that the current strategy is no
longer applicable. If the performance of the current
strategy improves unexpectedly, it may indicate that the
environment has changed, and that another strategy may
perform even better.

While the anytime learning approach could be used
merely to fill in particular values for parameters that are
initially unknown, it is especially useful in changing
environments. Each observed set of values for the
parameters can be treated as an environmental case. The
learning system can store strategies for different cases,
indexed by the environmental parameters that
characterize that case. When the environment changes,
the set of previous cases can be searched for similar
cases, and the corresponding best strategies can be used
as a starting point for the new case.

Our particular instantiation of anytime learning uses
SAMUEL (Grefenstette and Cobb, 1994; Grefenstette et
al., 1990; Schultz, 1991). While the basic ideas of
anytime learning could be applied using a number of
other learning methods, especially other reinforcement
learning methods, SAMUEL has some important
advantages for this approach. In particular, SAMUEL can
learn rapidly from partially correct strategies and with
limited fidelity simulation models (Schultz and
Grefenstette, 1990; Ramsey et al., 1990). More
importantly for this discussion, the genetic algorithms
provide an effective mechanism for modifying previously
learned cases. When an environmental change is
detected, the genetic algorithm is restarted with a new
initial population. This initial population can be
"seeded" with the best strategies found for previous
similar cases. We call this case-based initialization of
the genetic algorithm. Our studies have shown that by
using good strategies from several different past cases as
well as exploratory strategies, default strategies and
members of the previous population, the genetic
algorithm can respond effectively to environmental
changes, and can also recover gracefully from spurious
false alarms (i.e., when the monitor mistakenly reports
that the environment has changed).

A case-based anytime learning system can be viewed as
one that starts with an underspecified model of its world
(the original parameterized quantitative model), and then
learns, on the basis of experience, a set of fully specified
models that correspond to the environmental cases it
actually encounters. The power of this approach derives
from the cooperative effort between designer and robot.
The designer provides a rich sets of models that can be
used for learning, and the robot selects the appropriate
models from that (possibly infinite) set of models. Each
partner makes a significant contribution to the

knowledge acquisition process.

Preliminary experiments have shown the effectiveness of
anytime learning in a changing environment
(Grefenstette and Ramsey, 1992; Ramsey and
Grefenstette, 1993). The task used in these experiments
was a cat-and-mouse game in which one robot had to
track another without being detected. The changing
environmental parameters included the speed
distribution of the target agent and the maneuverability
of the target agent, as well as environmental variables
that were in fact irrelevant to the performance of the
task. The most promising aspect of these results is that,
within each time period (epoch) after an environmental
change, the case-based anytime learning system
consistently showed a much more rapid improvement in
the performance of the execution system than a baseline
learning system (with its monitor disabled). Case-based
initialization allows the system to automatically bias the
search of the genetic algorithm toward relevant areas of
the search space. More recent experiments show that the
longer the epochs last and the longer the system runs and
gathers a base of experiences of different environmental
cases, the greater the expected benefit of case-based
anytime learning is.

5 SUMMARY
The SAMUEL system has been used to learn behaviors
for controlling simulated autonomous underwater
vehicles (Schultz, 1991), missile evasion, and other
simulated tasks. This paper reports some early tests of
the learned knowledge on a real physical system. For
more details of the SAMUEL system, see (Grefenstette
and Cobb, 1994).

Future work will continue examining the process of
building robotic systems through evolution. We want to
know how multiple behaviors that will be required for a
higher level task interact, and how multiple behaviors
can be evolved simultaneously. We are also examining
additional ways to bias the learning both with initial rule
sets, and by modifying the rule sets during evolution
through human interaction. Other open problems include
how to evolve hierarchies of skills and how to enable the
robot to evolve new fitness functions as the need for new
skills arises.

References

Booker, L. B. (1988). Classifier systems that learn
internal world models. Machine Learning 3(3), 161-192.

Brooks, R. Artificial Life and Real Robots. Cambridge:
MIT Press. 1992.

De Jong, K. A. and W. Spears (1993). On the state of
evolutionary computation. Proceedings of the Fifth
International Conference on Genetic Algorithms, pp.
618-626, San Mateo, CA: Morgan Kaufmann.

Dorigo, M. and U. Schnepf (1993). Genetics-based
machine learning and behavior-based robotics: a new
synthesis. IEEE Transactions on Systems, Man and
Cybernetics, SMC-23,1.

Grefenstette, J. (1987). Incorporating problem specific
knowledge into genetic algorithms, in Genetic
Algorithms and Simulated Annealing, L. Davis (Ed.),
London: Pitman.

Grefenstette, J. J. (1991). Lamarckian learning in multi-
agent environments. Proceedings of the Fourth
International Conference of Genetic Algorithms pp.
303-310, San Mateo, CA: Morgan Kaufmann.

Grefenstette, J. (1992). The evolution of strategies for
multi-agent environments. Adaptive Behavior 1(1), 65-
90.
Grefenstette, J. J. and H. C. Cobb (1994). User's guide
for SAMUEL. Version 4.0. NRL Report, Naval Research
Lab, Washington, DC.

Grefenstette, J. J. and C. L. Ramsey (1992). An approach
to anytime learning. Proceedings of the Ninth
International Conference on Machine Learning pp. 189-
195, D. Sleeman and P. Edwards (eds.), San Mateo, CA:
Morgan Kaufmann.

Grefenstette, J. J., C. L. Ramsey and A. C. Schultz
(1990). Learning sequential decision rules using
simulation models and competition. Machine Learning
5(4), 355-381.

Karr, C, L. (1991). Design of an adaptive fuzzy logic
controller using a genetic algorithm. Proceedings of the
Fourth International Conference on Genetic Algorithms,
pp. 450-457, San Mateo, CA: Morgan Kaufmann.

Koza, J. R. (1992). Genetic Programming. Cambridge,
MA: MIT Press.

Ramsey, C. L., A. C. Schultz and J. J. Grefenstette
(1990). Simulation-assisted learning by competition:
Effects of noise differences between training model and
target environment. Proceedings of the Seventh
International Conference on Machine Learning pp. 211-
215. San Mateo, CA: Morgan Kaufmann.

Ramsey, C. L. and J. J. Grefenstette (1993). Case-based
initialization of genetic algorithms. Proc. Fifth Int. Conf.
on Genetic Algorithms, pp. 84-91, San Mateo, CA:
Morgan Kaufmann.

Schultz, A. C, Using a genetic algorithm to learn
strategies for collision avoidance and local navigation.
Seventh International Symposium on Unmanned,
Untethered, Submersible Technology, 1991, (pp 213-
225). Durham, NH.

Schultz, A. C. and J. J. Grefenstette (1990). Improving
tactical plans with genetic algorithms. Proceedings of
IEEE Conference on Tools for AI 90 (pp 328-334).
Washington, DC: IEEE.

Whitley, D., S. Dominic, R. Das, C. Anderson (1993).
Genetic reinforcement learning for neurocontrol
problems. Machine Learning 13(2/3), 259-284.

Yamauchi, B. (1994). Dynamic neural networks for
mobile robot control. ISRAM94.

